

THE 8TH INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION

Generative One-shot Camouflage Instance Segmentation

Thanh-Danh Nguyen^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen³

¹University of Information Technology, Ho Chi Minh City, Vietnam,
²Vietnam National University, Ho Chi Minh City, Vietnam, ³University of Dayton, Dayton, OH 45469, United States {danhnt, tiepnv}@uit.edu.vn, tamnguyen@udayton.edu, †corresponding author

Content

- 1. Introduction to One-shot Camouflage Instance Segmentation
- 2. Related work
- 3. Our proposed CAMO-GenOS framework
 - One-shot Camouflage Instance Segmentation
 - Diffusion-based Multi-Conditional Instance Synthesis
- 4. Experiments
- 5. Conclusion

1. Introduction

- "Camouflage" is a defense mechanism that animals use to conceal their appearance by blending in with their environment
- **Applications:** search-and-rescue work, wild species discovery and preservation, medical diagnostic, etc.

1. Introduction

- One-shot Camouflage Instance Segmentation (One-shot CIS) is formulated as a two-stage training task:
 - Base training phase on abundant annotated data of general domain
 - > Novel fine-tuning phase on one-shot sample of novel domain

1. Introduction

Focused challenge: high-performance methods require training on large annotated datasets, which are costly and impractical to collect in camouflage scenarios

Contribution: we propose **Generative One-shot Camouflage Instance Segmentation**, dubbed **CAMO-GenOS**

2. Related work

- Image Segmentation Research
- Camouflage Instance Segmentation
- Multi-conditional Image Synthesis in Low-shot CIS
- Few-shot Camouflaged Datasets for Instance Segmentation

Dataset	Year	Venue	Туре	#Annot. Camo. Img.	#Meta- Cat.	#Obj. Cat.	Bbox. GT	Obj. Mask GT	Ins. Mask GT	Few-shot
	2016	FIGGIA	*** 1		Cat.	Cat.		Mask G1	Mask G1	
CamouflagedAnimals	2016	ECCV	Video	181	-	6	×	✓	✓	×
MoCA	2020	ACCV	Video	7,617	-	67	✓	×	×	×
CHAMELEON	2018	_	Image	76	-	-	×	✓	×	×
CAMO	2019	CVIU	Image	1,250	2	8	×	✓	×	×
COD	2020	CVPR	Image	5,066	5	69	✓	✓	✓	×
NC4K	2021	CVPR	Image	4,121	5	69	✓	✓	✓	×
CAMO++	2022	TIP	Image	2,695	10	47	✓	✓	✓	×
CAMO-FS	2024	IEEE ACCESS	Image	2,852	10	47	✓	✓	√	√

Tab. Comparison among camouflage datasets (w/o non-camouflaged images)

CAMO-GenOS has 2 main components: Diffusion-based Multi-Conditional Instance Synthesis

► One-shot Instance Segmentation Pipeline

Overview of our CAMO-GenOS framework leveraging generative models to enhance one-shot camouflage instance segmentation

CAMO-GenOS employs the Diffusion-based Multi-Conditional Instance Synthesis to enhance the diversity of camouflage instances to boost the One-shot CIS performance

Diffusion-based Multi-Conditional Instance Synthesis

Focus: Diffusion-based Multi-Conditional Instance Synthesis

- Inspired by InstSynth^[21,46], CAMO-GenOS synthesizes N_{aug} samples from multiple conditions:
 - \triangleright A referenced query image $I_q \in \mathcal{C}_{novel}$,
 - \triangleright A ground truth mask M_q ,
 - \triangleright A guided text prompt P_q
 - Metadata-Driven Conditional Text Prompt:
 "a photo of a/an [size] [meta-class] [instance class]"
 - The synthesized instances are post-processed with the **Histogram Matching** technique

Diffusion-based Multi-Conditional Instance Synthesis

Focus: Diffusion-based Multi-Conditional Instance Synthesis

Exemplary histogram matching results on the synthesized instances

 Histogram Matching Post-processing adjusts the synthesized pixel intensity to match the original image

One-shot Instance Segmentation Pipeline

Focus: One-shot Instance Segmentation Pipeline

- Following FS-CDIS^[7] and iMTFA^[11], our **CAMO-GenOS** formulates the **one-shot CIS** task with:
 - ➤ Base training phase: on 80 COCO classes
 - ➤ Novel fine-tuning phase: on 47 CAMO-FS classes

4. Experiments

- Pioneer in one-shot learning on camouflage instance segmentation domain
- Our CAMO-GenOS improves over the SoTA FS-CDIS^[7] thanks to the generative approach in both tasks on CAMO-FS benchmark

Tab. State-of-the-art comparison on CAMO-FS dataset. The chosen backbones are COCO-80 FPN-ResNet-101.

			Instance Segmentation										
Method	Synthesis Base	nAP		nAP50	nAP75	nAPs	nAPm	nAPl	nAR1	nAR10	nARs	nARm	nARl
Mask-RCNN [28] iMTFA [11]		2.99 3.66		5.73 5.37	3.26 4.09	20.68 22.42	3.06 4.35	2.74 2.01	12.45 11.30	13.81 13.58	21.85 25.97	8.34 12.96	13.74 12.53
iFS-RCNN [10] FS-CDIS [7]	!	4.27 4.46		5.98 7.34	4.75 4.84	21.57 25.50	5.71 5.60	4.87 3.48	11.70 14.77	13.51 17.26	23.35 27.20	11.75 13.51	14.28 17.11
CAMO-GenOS	BlendedDiff [19]	4.80	+0.34	7.79	5.37	28.59	5.67	3.32	17.85	19.53	29.00	13.45	20.65
(ours)	DiffInpainting [17] GLIGEN [18]	4.91 4.74	+0.45 +0.28		5.47 5.31	26.54 28.10	5.06 4.79	4.02 5.28	17.18 17.65	18.72 19.38	27.70 29.33	9.75 12.29	19.23 20.42
				Object Detection									
Method	Synthesis Base	nAP		nAP50	nAP75	nAPs	nAPm	nAPl	nAR1	nAR10	nARs	nARm	nARl
Mask-RCNN [28] iMTFA [11] iFS-RCNN [10] FS-CDIS [7]		3.74 2.93 3.79 3.88	_	6.15 5.86 5.92 7.71	4.33 2.20 4.46 3.21	26.60 20.95 20.95 22.38	5.95 4.18 5.17 6.40	4.37 2.03 4.55 3.32	16.83 9.25 10.04 12.66	18.44 10.84 11.67 14.85	27.57 21.74 21.15 22.67	11.85 11.49 10.60 11.89	19.66 8.77 13.01 15.36
CAMO-GenOS (ours)	BlendedDiff [19] DiffInpainting [17] GLIGEN [18]	4.90 5.00 4.83	+1.02 +1.12 +0.95	8.09 8.33	4.78 5.26 4.85	29.12 27.90 29.23	7.49 6.57 6.28	3.61 4.05 3.97	17.70 18.04 18.46	19.34 19.60 20.59	29.13 28.20 29.64	15.24 9.67 12.92	20.42 20.51 21.81

4. Experiments – Ablation study

Tab. Ablation study of our CAMO-GenOS on multiple generation-based methods evaluated on CAMO-FS

	Instan	ce Segm	entation		Object Detection					
Method	nAP		nAP50	nAP75	nAP		nAP50	nAP75		
FS-CDIS [7]	4.46		7.34	4.84	3.88		7.71	3.21		
+ ITL	4.55		7.52	4.94	3.99		7.92	3.47		
+ IMS	3.94		7.44	3.64	4.01		8.05	3.44		
+ Both	4.10		7.40	4.15	3.99		7.82	3.40		
CAMO-GenOS (ours)										
w/ BlendedDiff [19]	4.80	+0.34	7.79	5.37	4.90	+1.02	8.09	4.78		
+ ITL	5.16	+0.61	8.25	5.73	4.97	+0.98	8.54	5.08		
+ IMS	4.19	+0.25	7.98	4.54	4.75	+0.74	8.38	5.16		
+ Both	4.25	+0.15	7.36	4.71	4.79	+0.80	7.71	4.52		
w/ DiffInpainting [17]	4.91	+0.45	7.84	5.47	5.00	+1.12	8.33	5.26		
+ ITL	4.80	+0.25	7.90	5.32	4.97	+0.98	8.29	4.61		
+ IMS	4.04	+0.10	7.21	4.34	4.68	+0.69	7.84	4.84		
+ Both	4.29	+0.19	7.30	4.60	4.70	+0.71	7.83	4.86		
w/ GLIGEN [18]	4.74	+0.28	7.53	5.31	4.83	+0.95	7.94	4.85		
+ ITL	5.30	+0.75	8.26	6.02	5.23	+1.24	8.63	5.61		
+ IMS	4.39	+0.45	7.28	4.86	4.52	+0.51	7.87	4.52		
+ Both	4.33	+0.23	7.28	4.74	4.75	+0.76	7.62	5.52		

^{*}The increased values in blue are compared to the SoTA baseline FS-CDIS [7] with the corresponding ITL, IMS, and both of them.

- Different diffusion-based instance synthesis methods stably increase the nAP of the baselines on both tasks
- Instance triplet loss (ITL, built on top of FS-CDIS) yields better contribution to the final nAP

5. Conclusion

In this work:

- We proposed CAMO-GenOS a pioneer framework addressing one-shot camouflage instance segmentation utilizing a generative approach to enrich the training samples
- Experimental results proves our SOTA results among the surveyed methods on CAMO-FS benchmark

In the future:

- Generalize our proposals to the general domain
- Automate the multiple conditional image generation procedure

MAPR 2025

THE 8TH INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION

Generative One-shot Camouflage Instance Segmentation

Thanh-Danh Nguyen^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen³

¹University of Information Technology, Ho Chi Minh City, Vietnam,
²Vietnam National University, Ho Chi Minh City, Vietnam, ³University of Dayton, Dayton, OH 45469, United States {danhnt, tiepnv}@uit.edu.vn, tamnquyen@udayton.edu, †corresponding author

Acknowledgements

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG T

MUHCM - UIT

Nha Trang, August 14-15th, 2025